之前完全用blockly实现了chatglm1的插件
测试情况看来还不错
最近更新了2代,带来了更强大的模型
我更新了推理的后端
现在使用glm插件都默认使用2代模型
关于blockly这边插件的实现方法复制下面的文字并且导入blockly
或者从https://drive.t4wefan.pub/d/blockly/open-LLM-chat/230603.txt 下载
插件名称: open-LLM-chat
导出时间: 2023/6/28 01:21:42
-=-=-=-=--=-=-=-=- BEGIN KOISHI BLOCKLY BLOCK V1 -=-=--=-=-=--=-=--=-=-=-
H4sIAAAAAAAAA+19aXOqTLTub7HUU87igKKWpaA4z+L4hUJBRZkUcPrgbz/dRjIY
icSY7PfWubuyTVS6+2H1mrtX44wTznB4y21UXpbAX8mQD7wqgj7nJfrdx+A/EogF
IuC379xAYuWNev4GJZxoHn44kdnD+ZNznxNBnq7Ut/cCI811Zs713zpFfB+vAz2d
L9UOCncZdCqLIiOxl2F59vIxGNEfUQ+rfpdMMMuQM4w2tshyW7lct3/t/QwIjUTg
39xe2zBdjdE4A1X8jJufytI7oHBITtLePtBAQwPOhjs3Rxjw38CG5qTLuAovSdwZ
44wRVA5+tOD4+eLcHDsD2vGstjgTOoaA8S8QZjwnsO8wSIz4SoEFA5sbWCVF195d
yEw1Y4beqP4O+hslwReMQLPcVGA2DGxEq5AUl1v9SN04wfNxkh9RBFYHs5Jvd3eO
dt2Y/Cs6gusjOVHXmBckyF4UJDUNqALvXtOUZDC42+0Cu0hA3syDoUQiEdwvNFF4
ucIZIUHzM7iXm0bgr0tzUZ2/vyr4dtlXrVROhRxG8+wDjTecqgB24L5qGny9W/D2
hSbXE9jHO8iFOvAmXi4CH4YuH77D+Ppd+PLdKwTTWc+TuRpiZdIh69Lahhevp9hz
BNcOo6uhM57LSeV02iY4AUOiRHLgNrmlejNPXloTTapkjo4ih9TbO3XBsPLOFN01
MB3IshMlC545FS1EJzq6tlG7YzZuAup1LCAKk+kLpgusO1SZc1pXn6iAONL8GgQg
SrkKummUEnsgpcS07p9zLUCdgWtoTQgYLXRhKG2jG8wEPw5fPj4riA9Mdp+pBiWy
QxocVOg063SXwjvU5erztwYP1fAuZT5DXapTbhStMJDBpyL4DZT3NaEGIa/KSRFA
r6NYHs6CnhwQ67xd+TAROBWyzKu8xHL75ux6nMIBbSdH7jZoVGif0EFwN89NERMy
kY280azc+YoMfbzWI59AheIwPJgclqW2kEpuV7sI5ji9dPFGg0L5AuoRmdjFqzG2
La0nhUD6EFgGRp127ZnyAESBZjZz/ZYtSEaDpdRanXbzkhrz85McI1MmY7+0uVi1
r39gc6jErDPGUuala2ygo3aR1rx9wH/zGtBfJLpsICT4OLa9XDuVBYFR1BejDEXx
tiMAOgWmMCfrL3Y/bsIweD5vWe1eg6V3OsJLDgA14Dq6S8V+ONYlm/en8X9UWd9M
ufR5NOFAa9EdN2Ok16k1hCyft0zMT9Ckbl3N5dpANREFaP2r3ElJk2bz/B6crm54
Ng1uCrgpwPcRaPjuM7Twd6TsratroJVCaT7D/Dt67T5xhZMABpj4Yh+4HAwWeZQO
FNBdMj4mVoeqH9igKR0VpHTMN7lPB0AAXeU2Jncf/c7dX/q5xnYaKlU714il4kEm
eypDZne/uLDXt48+evsEV1jNwl4RS+H6tIU6uscTIIilm4dOqsnNx6zAEbg9D93T
LbPhmYnAQet8Dc+9Lizri/I0GsyA3ik5XGyIyYEJPOBOXZrNBXnCCNBdf8H4HuIn
fWSJT2/RDqttYU9onor7tgO26qhlJm5B9jm/UENfkHTBCYJ8TUxg7HNVKwBBPKNt
ZEGl+U+GdAUx2o+1BKNzlRgVCFYQmmWMq67UXblgSdsJ8pyf0rLCbS7ez8chXYg8
ybgLxY6bivjSULXaZ13Dhl7ToNm6tGp2nKZ2G7eOCsRoCrP5ZLG9zWEXWxJRDqrj
YyJDtiNHQbqHiWz/ENNXhjZeFkZreyqotba1JN/zRlPDgAmga0MLryEe5dwMMEkE
zecYfTBRwIjomBiJcT57X+4FmTGXJkt4vpyjo9+7tbWBHg76cCYYt4M/88WKZmYy
/2aWQBCQD4uYkhsmM9HhSCNQV3om/8U8KWJgnNpBLTO29QaLc7SWVzqgrZa4P1dO
EnViuBNHnCTmJPLw59bMfVSITUvi/4W2KWo86AuJSccs0DFoKuarARcexDzoLOi8
GUedO18wKimc49+zrjSZy29pJxMeOx3A9RggZLVRYQvsEZj7Xo+zA6b7p1wm2Gp4
aBohPWpU98QkrlMUG1/yWOhR2ZN0QbgevbsjGs0MoEFSrOeZ6drfo1z1D9bo2zyy
4TR9Yxo/gcszWejMpWmsEWPznSTg7lBtnJk6bxsmyHIfUnQPBA9tW19RGvEusg2v
A6dpelcCbY2r7kYIplNvMUJQuTmceJr5NPdB1pbtgvvvzBWbv5lLCt1myB43IQR0
Ft/efRFW3vEuQYNcGAxaVetJLgVaj+ZZYbVhEvU3Ln/YdUUqR7HJp7qAo2Didk/5
WGHR7wdvc5TVQAamFm+5iXB+UNRd2UGNM4RZrvmhbVN8rJlFM9Jt9GcFbDLJ+kaw
RPRbajxWBrB6glZtyd1IfGuDzvOkcAiagHvvE4IbVpPB4Erm1QUfgO7sGwnvJ7yu
gZT2+4yn1KgNJulkX+T39YZQtQ6C3fBbLnCJRQOKPgmywUuEGgSeoOSv1er+M0Tg
yirnl4Bm0NRSeoCsdS3lZr6R1/aUtkpGzIIB9uNjHLDiGLB8NonTrdti/4uZbQVw
HafdSVF/L8/81uXP88Yioy2AdeK1hchp/PSakOVheOtP2GwHTxXNdPyguc8tm0WK
ryYTSLY5tHc28wuJOuOSdHFyVnvXyaB4l/T296LqUiad0WAFolfSYzdB1ehB1ZYM
IfCfmfV8EAlK5iPQqagPdL20jcoIC9UrMzGjkIHFkijLJqO2RaBY9ENnYU8XWrpc
8MpiSzE8w2tqbxlBf2faHvNSRqWoLVSqwhWEU2U7OVRt0G+KIYu9yX1e+yq3Bd9y
mPspaaB+tgZkxIkSZXI0qbqwFZgSsZd0KDsOLjLcSxzcX4axnD82s1XDfjkRJ5lD
lp+3/IOkspmKggmuv7VSR85vWyawymJ95DT3Iu1ubEsmwJ5noW66aSDKIVGtPiDG
ya0nyqGxRHisfBU8fHDTIj9006zkpRyRUxbEpoRjBnh/3m0fR26Mj6tfaGxDtj5k
phiFpxmWBfOsOj9n0R7O7Ta4ACVBjTTr5EtAAFaL6VZfV5T7szkVOGZzA4qlHJkV
wo0d1KbSH6Y0bOV3vqyGxxAXbsdaJuDeSPdh+fS+LyEZK/h3vXKJpe8s9pRaUMuh
+SipDiWMcdkbsxiIVDDnbU37jFDFMZgchEkMUMfWWigscZosCvayVRmI/lAGbnGV
NJuUsjN6DujAYXS7JHrq8n59n6ecZMyJ5514BOYjEjknjjnJhBOLO7G8k4zDrARO
wq/wgpNIwFQF+CMBvgJvc04sdyOLAZrjYScWPV9MOgnycjGOPCpFVli3aldbKWqu
VSZ7BtAAuLbR0J6/y7ZXLtr3xermirk+xv0hV7YWbWzsQA/hQ3o785lgeTcXgfO/
G0gsrZ9YodIqig7Sh972cIpRuJrYtWlAq8JdKn00vD+T6G9EB2JEdoV8ZMQDaLjm
elTidPQsDfH/68jg2WGB8+cxgZkTswAdr4NAOTkI8BIYOlzRfKKFx+KMCbi/dWXc
S9xRTzYmwOXDDyibysFW8XyYD98Xkd9waID16HccFd8eEGtQLOynwVIhlg57bzPa
v3Fp2GMn3BdA0yKp1ZP0tkA02rHxXcF9dWgueu4JLo0VtNMJICVSbB518LsJpBcd
l4nFBgOdmaVVflklswBIKTXakWNslK6tet1EXz1ZcLnup0i+FSB9kZkvqQyeYpPN
RK2XPJ6WoGdifKh9wYN/l5MHXa8WPn4DWpEvqxwpj4tOL2sdygh6fy8rb4XfAqXp
cLICYW+6JuhK0jUr76mGM24W3V/z2jWjWcrW3+Iyv4Da3JXjpCdG9KWbX2hK02yV
4B2PRZHoTRZ7Wja/VBXTiB6aFLqOCD+kZoo9Zqja33COEazKjO1yS0RP6VXRJyYL
IyNf9Q+z+HuNW+2bo02BCLsAE9eA1geGJwc4AaVMiPGsXD7FBfH5vAmaLYJ7N017
S2x4V3uTi4fz+Howg2e8TKm7CE26QJrQbPokf9jy8ZyQdT6z+9w40OMKHxdjJOsK
zUfBw33OdpLRcwSBwCgDBAsgrIChBOlM4DC4AK8wTPgcL4BW2DkAQWFsksDexSYx
+DlWuCkwj2WrLeSsko16W17v7AtideKj7UFU9aXv6pY/yFbRjQwFZuXQjfYyh3xg
MyaicKHKbCvH/9WMVdHdFUHMnSv1kR0Vyfs7R27oMBTzf8K9K1dxfZSiUr7jwGfL
eBxt6D+ZRYy/mK+ygnUespUB01XDozWrDu3o2c6iuZjXSgr3tsF9Zg6LhjDOkORu
v9oh+tVhO8acxyIO90Pdf5jHWsfqudgZfW7rXaWPyQkgM5bDD33n7xnrvuxmwDDN
Zo6MB1rSqSjumLFBpl+XDXNznagdsIpGJPvruKO4Hhdme6RlQoZnmelygxIG06m7
jkJWSYw6jVUV/HVJW/3IUAvbXn4Wj9X4dDWlLnpe+/ycUn2yme4Iy3AoVFgr/Dkh
SgiRnh10u4la0LvQxBJxJ3FrX9K3MnrPS0ZzesofJHSOkXw1TwpIRXOu3De7N8PH
R8X2a7/alwBRHNoKAWWdcKdgDkMsRzOsTBjbz34gsFYoRAlaf+nVElJHBhKLwl07
fhCcldjvLqU99+c7BP4iIJYDdhyqw1El4WknY5VuCEZ4MKNlQt3nbI5tLloiu6/U
Jw4wUq/C9Epc8zQxIegfbY5FXcV5cOGpxhdebyBdAHPchBNN30P1J8E3Zz+kSgkw
UYFpvr2q5gqOSathtgHzjQNfivCeE3cjbUzLBFYpcYnSgwrorT88F8ESOxMYHxSf
heWO39tTm1fJWCWJacouNTwEyDUaAro79Z+YWEyzae4kNk9mmzkkNQYkJaOr5J9O
7DAy6udhLkxsp0LkMe87joBUnqyUQHye1mdtr7USMWaAeAY1oK8kL9oiyyPXYe/J
arqhRyxVH/xpKBkJ6ccZuDrQpk7zEFvpk/1t0m9C5/+rgSTUvMP4nis0GhFbrOgY
eZMw023kj/4ToaRtusb926r7tMUP+/7cBct9ULOFnz/e+kCKYWKLrLRg2RZ72ZmU
cICGHMWa4PvLzQ8AkO0I/JElrFvEbGFMbNQmrXznLul+KWT82vfcOLrJwsjzUpvt
A41roHtqsoi3OGOJ5aaS+Y0YEsU7Yym4Hu3mVbHb8EbrNv5oVSR+L+GblaKn9t6L
zvRIQcmls7DOauoyrvqlGPLEhjC24z5s4SYE6IrkYlOkcc6V/jSGjFfRJt7sp4ub
NIzvvFvRo/r8n1nu2fmeSrrghby13vk3q6VMK43EcB+7KxXfjDCeFDTEF4N1dRwp
wgNQZDc2zwBZLosM/gU7/sI6mmlwkWVQV6fskhYnDu3mdQx1twyO/Eehhf8EKKQE
xKjalQ/7MTIAGmWdRrv3UP1qtU0DFgwMhofTElZAcHC9Zg+3osUGvNmWpocru8yr
bnxpN+U9ZXhY2mvTOnEQTzQw21K8LXI/DwUc49UocGKHi60N3H99eioT3bRZJdnf
TASUhglQXmhezAZPVAfoMz6LqBirmcB6aoFdUZtz7S087+ZYo1ybwCme7cXNakI/
1uq+nXfxU2//azO88qdQG1A2o4SHGvQS0BA7GCV9Lqn7tZwtkAGUjoc7O0CZFL4o
tcldwp0GXLp0/nOrO3H0qv6Maz1KZ71KIgXTdvwub0KM/yeKpcIL77Ez97bmsHSp
2iqPvM0yu76tBH5aKtXZ2bpFPahUMu1amdYBY/XRlnFU0P8vk3rpDjukR+4l2cXT
M9tp5ydPCQubLP6DZVIW0ghLXveUd+uIDLem8XJYTBUngPD3d7L/QcYAXMh3gG5C
pzjPrbFWdGI/BWya2Sa+/6s5A6g0YCFriQNz6Il28YwLbjhsnEb4yfkfyhvwruVY
btCpmCvaAu4zYRO2o7iZmf/HS9DRo23kLnKxbLseaS6IblA9mNWSfpmXfGb6AOH2
DUC2OA76Rk8pvCuXulWUMHNX/hMrzm58CBcI5Q6DZqqpYnyLwfSqbmyb/w3f5ZCL
iVPX1O/edGPC+AhX9ZKskWf8h35Lnu+D2csMCFkKVICA+jMKeF/SVLsJMZ7lu8iR
TQCMN4+0DjKxIEO1PBiXtA+dP/dcQhU7edw4MrYVawPzGtUHEr2ufeayZ4vnKZOZ
LKVjDVoIdz6eLZLJ3MFsu9i/zhgo8dAc9Eak4vOQUA7Y56EJ5zMY8sEswLtSVFrZ
wGyAdrge9wim2a8M9enIDW1oF/p6G022K8RtYbgucGD5La/KYNohxB8cYdjqNFtk
hxpdBmmQRZwq90mnqVlu9OoE2aGpJp0rke+3PT9Wm7vBN3BnJNyzk+VGm8UsiLMj
mm2bwL1U5r47qfXhmmlUjPfcdl2MeOPHMozclquzbxU3W156jbnr5Uava06hH1dO
l0cjW6E7PZXhJua4PbeoIS7J7CyAb9UqQ7UscNL8fOLtlZ+SI9s70MMAbpZCc3Ux
sSrjBaCaNLP9R1cu5DddNHDRbNnpNBv1bORI065UBhNOEZObfOgURSu6qk0U4f3G
mIItpE+EBV1k4Qms9x2fL7XVVdrjMS5IwbDWHU3xk0rpVILbwmr+6L43NIF24QMU
sSQbVmgzTM5Gu8QG9GWjtCMV9aPSgjE/gO6GUygye1qTV5x0k0qPpGO+UT5GZjTA
vfJoqsz8WSnIDjF0LRrm/O/Kx1SFY1Zgdr9/8jEnTWWWe+TM5C2vqTQ83/t5VWvG
bbxc+O7gZAPl6xfGibdvIH5e6ma+t9dR9SQ4F2iRFzNVfpomYfKtYtzQr3uUtzRb
Jdp3xxTg1eXzlKPIOoIz1kYZK2Jfnd15+7zGp/llWYorN/b2LiyN3/M1oa2wPZ/Z
0usNab6wwL0jGy3hXapAdBWo/BRmo36OTKZrvlBTYqFww75Gg7bpfG5ul2E3H5mR
Xuvc5t2i28OnbZglP3o2hOV6qpacNsLtE5c+HnZmpVC3Eh/w7s3R/STxQcsRTk+V
qmvvaQAYsDFQ+9lJ2QTaL6c+sj68kRoBHbzOJxEQTpEZpIRpJcOd+HXZtCITUpP0
K/yAE8MJH0C4HS7Bq2N7v0zxVSpeWG7zV7kP/wyDZ1nPR27PcgxmeKc3wety0fPe
hfxAgGX5CNY78pwFmHPoopkY0nvQdb7cUPNSFC7p3Zdp4zkVvyjOc39zPVZTdrQw
R1c5F73yjczVzd8KdMGV39bgmTnRSSbIuwMHfWiTLVSu/oZA+1a+Cdo54Z1yxNFi
7ArdXRpx2j8xtDTRTzmiG0yiDkBqXaFSG9w96u5Zp47BWwGAXlIFAP/D2oDxdQaO
/qu2GT7Uw0+Lpy0ZqSVWnqGrFKvG759f8YBIP6NYWZ55jxFYUlUA3lb+NNz6jttu
0GvszP635crEKc178f3AThTX4mq7gc/QkM1OwPrbLbVUg+WUCFvb8PhBWQCe5bz2
wdQE2tssX3nSN2PMb54xXKvGusXtgdgriVxkr0+p87OD7kgNKc0FoE1uMts3YrjJ
BviRtMizrMDtbkxgXQGGwb6b5xh4oHpIwsswWaZhw7jzvQKzutBmJROOl+faxJ7z
pWAV2/nMFm2VPCKGG/CDTPhryllnefl62ERuGy5R9g6iVIe9PjEagOaBgcmgRg+P
2RF4uiINq4JcrqAOKFhsI+tCrTfbWnjigaEtuT0jKgJ3joGNv0Ul4vyhWfEsXfop
QB5ADwXXUSoDuWgHiw3LZ4r99DwlS/o5hviK/Dw0hhwZSfuG3V2AC61hmYFlT/Es
xn/kJg5GqUnMVxKgkhlV7HUb7ot2JnexvgXz18ietlC2opZbBD6UpgSPem76mlO5
MY6YJnzfLZS9ZiCusUWeha0g2dbxFOh4jOSXaxGAdHTheXd+s21YN2Z5Jm9E4wFh
v/rj+3SLLxjeZ8eub3AZAvek+aosPA1z3ynB2jWpWN6NjdXxqwe1RSLIzVwjXicv
PX54iIOFLPGddD1ww1hZpPkbz0BD86MOXe+E+9lWLbLcZ48SB6bmddXralj4NKa3
d49lYOEhgooEzxVZbMqSX1FsuJCHhwrqJuzwMRd/IQjV/CmO7XZiKx2i4iw1E9QZ
nDptthnfwYB8PEj1CcwTLgJ6U8hgiZApQBnWJmdsC1fdiJOuWSeBWmGdT/rwRzxk
amMUEp4+BKaO7hZOSIgHERU5q5QrmuEY/pMAJjADzFVtH3Gvv9Kl4K7BeK6zyqzl
msnk3jDKgIDn6O5D4OJ80LTcrNqwhbrDwSrRp3Ld4NKfOEw2ZtuD39drAEhzQcyI
6vzGiSQ/4kPHqF3khgwJ66u6630TloVmM4vibT6MxhN3+NDscKwfc+I18GK/H3IH
Fb18dnHqEYcEg5OJearhxnS/gFW/nvLHaXvy2stbKtWrulMrml4Q6Ag3qhGv6BqO
xu7Q9ba/8zvyHfbHgSzlS6rLkVkfYe1nbwWdNtufZRtvTXgkF29kR8epbZmHSTvP
IiSOCIvH3F1EGxLx10TbEa3RLniMaVgs06iD5dN8lnDcx7eV+emNpMgT+C+5CKyW
3Inn+sQhTLewWeFd+doVB4Zitw3gGwea5mZ/hwkBIeE+Dq493/aRHgC+tHfWOaqw
+qr+5NeZUEn3AdfEiVUv0SHh03vGmeE6yJof13Ir8nsh5O9yIyDfaCeOV7G8CFR6
hPcUisNB7mSW2H4HU98ImfOSz7PZkZRJGdMyUw76O0yhLUobzWHU3V+zI4LdYcf3
ocHTjUtCgw9GjUxFKopH5kkynEeQqFnE937V8QVVWuWF1f/AJFP6eCPD8wjx1HrV
Bct28u3kHPJfaNQuwWNJNEMcrp8KHb1Dv+sFyJ+HG2ZPLgAGhFSpZpbUfbtqjDn6
sPCpZ1YObXjcofgTiBb3s7X9IKESXECAOxBVqp7LGU+buSLYvdjsavvFb5HrtILn
maPAl8nDs4SiaTt22gWa9sOdLUvY5/AENfSIEaW/tDKeQ/7uKdy3REAenIL50KGc
hw8+IDb2Qb5cSBsq4eWR6C8PUveLnMa84WE5dbrhldcHd4cNE315oPgr9Bds2huw
82dv2u8dvg/FBJfudP2tnCKKsDOUC/tnSCLkjybQqJ/BmLgfYZkZh7HIZMqGX4D/
L9CyQuARfgAA
-=-=--=-=-=--=-=-=-=- END KOISHI BLOCKLY BLOCK V1 -=-=--=-=-=--=-=--=-=-=-